SYNTHESIS OF NEW TRIAZOLO[4',5':2,3]TRIAZINO-[5,6-B]QUINOXALINES

O.S. Moustafa; M.Z.A. Badr

Chemistry Department, Faculty of Science, Assiut University

Assiut - Egypt

ABSTRACT: Reaction of triazino[5,6-b]-3(4H)-quinoxalin one 2 with P₂S₅ and/or pool₃ gave triazinoquinoxalin-3-thione 3 and/or the corresponding 3-chloro derivative 7. Treatment of 3 with alkyl (aralkyl) halides gave the corresponding 3-thioalkyl substituentes 4. Treatment of either 3 or 7 with hydrazine hydrate gaves the 2-hydrazino derivative 8. Reaction of 3 with ethyl chloroacetate gave thioester 5 which on treatment with hydrazine hydrate gave the corresponding thiocarbohydrazide derivative 6. Hydrazino derivative 8 was utilized as versatil to produce several of fused heterocyclic through ring closure reactions with chloroacetylchloride, ethyl chloroformate, carbon disulfide, benzoyl chloride, formic acid and/or nitrous acid to give substituted triazolo[4,3-b]triazinoquinoxaline(9-12.15) and/or tetrazolo[4,5-b]triazinoquinoxaline 13.

INTRODUCTION: Quinoxaline derivatives have long been known as a class of biologically active compounds(1), as antimicrobials, and as anticancers drug use(2,3). As a continuation of our earlier work on quinoxaline derivatives(4,5), the present investigation deals with the synthesis and chemistry of a series of new triazino quinoxalinone derivatives.

EXPERIMENTAL:

All melting points are uncorrected. ¹H-NMR spectra were measured using TMS as internal standard on EM 360-90 MHZ NMR spectrometer. IR spectra were determined with a Cat. No. pye unicam infrared spectrophotometer using KBr disc. Elemental analyses were determined on a perkin-Elmer 240 C microanalyzer.

2(1H)Quinoxalinone-3-carboazide 1:

It was prepared according to literature (4) as yellow crystals m.p. $\geq 320^{\circ}$ C.

Triazino[5,6-b]3(4H)quinoxaline $\underline{2}$:

It was prepared according to literature (4) as yellow crystals m.p. > 360°C.

Triazino[5,6-b]3(4H)quinoxalinthione 3:

A mixture of 2 (1.99 g, 0.01 mol) and phosphorous pentasulphide (1.9 g, 0.01 mole) was refluxed in dry pyridine for four hours. After colling, the solid was filtered and recrystallized from proper solvent and anlaysed Table I.

3 Alkylthio Triazino[5,6-b]quinoxaline 4:

A mixture of 3 (2.1 g, 0.01 mol) in ethanol (20 ml) and fused sodium acetate (2 g) was treated with methyl or ethyl iodide (3 ml) while stirring for 1 hr. The solid seperated on water addition (40 ml) was filtered, crystallized and analyzed (Table I).

3-Carboethoxymethylthio triazino[5,6-b]quinoxaline 5:

A mixture of 3 (1.5 g, 0.005 mol), ethyl chloroacetate (0.6 g, 0.005 mol) and anhydrous sodium acetate (2 g) in ethanol (30 ml) was refluxed for 2 hr. The solid seperated on water addition (15 ml) was recrystallized and identifide as table 1.

3-Carbohydrazide triazino[5,6-b]quinoxaline 6:

A mixture of <u>5</u> and hydrazine hydrate (3 ml) in absolute ethanol (20 ml) were refluxed for 2 hr. The seperated solid was recrystallized and identifide as in Table I.

3-Chloro triazino[5,6-b]quinoxaline 7:

A mixture of 2 (2 g, 0.01 mol) and phosphorous pentachloride (2 g) and phosphorous oxychloride (4 ml) was refluxed for 3 hr. The solid seperated over ice was recrystallized and analyzed, Table I.

3-Hydrazino triazino[5,6-b]quinoxaline 8:

The title compound was prepared by refluxing hydrazine hydrate (7 ml) with either $\underline{3}$ (4.2 g, 0.02 mol) in absolute ethanol (25 ml) for 3 hr. or with $\underline{7}$ (4.3 g, 0.02 mol) for 2 hr. The solid seperated in each case was washed with ethanol and analyzed as in table I.

3-Chloro acetyl hydrazino triazino[5,6-b]quinoxaline 9a:

A mixture of $\underline{8}$ (2,13 g, 0.01 mol) and chloro acetylchloride (5 ml) was refluxed in dry pyridine (30 ml) for 3 hr. The solid seperated on water addition was recrystallized and analyzed as in Table I.

Triazino[5',6':3,4]triazino[5,6,-b]quinoxaline 9b:

A solution of $\underline{9}$ a (1.26 g, 0.005 mol) in alcoholic solution of KOH (10%, 40 ml) was refluxed for 2 hr. The solution was then filtered, cooled and acidified with dilute HCl (2 N). The resulting solid was washed with H₂O dried and recrystallized and analyzed.

Triazolo [4',5':2,3] triazino [5,6-b]-3(2H)-quinoxalinone $\underline{10}$:

A mixture of § (4.26 g, 0.02 mol) and ethyl chloroformate (4 ml) in dry pyridine (20 ml) was refluxed for 4 hr. The solid seperated was recrystallized and analyzed as in table I.

Triazolo[4',5':2,3]triazino[5,6,-b]3-quinoxalinthione 11:

A mixture of 8 (1.1 g, 0.005 mol) and carbon disulfide (8 ml) in dry pyridine (10 ml) was refluxed for 5 hr.-The solid seperated on water addition was recrystallized and analyzed. Table I.

Triazolo[4',5':2,3]Triazino[5,6-b]3-phenyl qyinoxaline 12:

On refluxing benzoyl chloride (10 ml). with either of hydrazino compound <u>8</u> for 3hr, the seperated solid was washed several times with pet-ether 40-60°, recrystallized and analyzed as in table I.

Tetrazolo[4',5':2,3]Triazino[5,6-b]quinoxaline 13:

Treatment of <u>8</u> (2.1 g, 0.01 mol) and hydrochloric acid while dropping with sodium nitrite solution (20 ml) at 0°C and stirring for 1 hr, the solid seperated was recrystallized and analyzed as in Table I.

Triazino[5,6-b]3-arylidine hydrazono quinoxalines 14a,b:

A mixture of <u>8</u> (0.56 g, 0.002 mol) and benzaldehyde, p-methoxy benzaldehyde (0.002 mol) in ethanol (25 ml) and drops of piperidine was refluxed for 3 hr. The seperated solid in each case was recrystallized from ethanol and analyzed as in Table I.

Triazolo[4',5':2,3]triazino[5,6-b]3H-quinoxaline 15:

On refluxing <u>8</u> (4,20 g, 0.02 mol) with formic acid (15 ml) for 6 hr, gave a solid which was filtered off and recrystallized and analyzed as in Table I.

Table (I): Physical and spectral data of compounds (1-15).

Comp.	ALP'C	Yield %	Formula		nlysis C	Analysis Calcd./Found	TIII	
ž	Solvent	Colour	(N1.NV)	ပ	1	N	S	Spectral data (S)
1.2								
_	330	83	CyllsNsS	50.23	2.32	32.55	14.88	3260(NII), 1220(C=S)
	ethanol	ogueno	215	49.52	2.20	33.00	14.60	111 NMR 5 9-1(S-111, M11), 5 7 5-8 1 (m, 411, Ar 11)
<u>=</u>	220	85	C10117NSS	52 40	3.05	30.56	13,97	1610 (C=N)
	ethanol	yellow	229	\$2.22	2.85	30.28	13,81	111 NMIR (CDCl3) & 2.7(s,311, CH3), & 7.5-7.9(m,
								411, Art1).
÷	2.15	78	CILIIgNSS	54.32	3.70	28.80	13.16	2900(C11 aliphatic), 1615(C=N)
	ethanol	yellowish	243	54.12	3.62	28.72	13.00	111-NMK(CDCl3) & 1.4-1.7(1, 311-CH3), & 3.4-3.7(q,
,		ç						211, C112), 5 7.6-8.1(m, 411, Art1).
٠. ٠.	C81	₽.	C131111N5O2S	51.82	3.65	23.25	10.61	1730 (CO ester) 1630(C=N)
	ethanol	I I	301	51.51	3.57	23.41	10.58	111-NMR(CDCl ₃) & 1.4-1.7(t, 311-CH ₃), & 3.3-3.5(q,
								211, C112 ester), 6 4.1(s, 211, C112) and 7.6-8.1(m,
								4[1, Arl1).
9	26.5	70	C11119N7OS	45.99	3.10	3.12	11.14	3240-3420(NIINII2), 1680(C=O)
	cthanol	redish	287	45.83	3.22	33.93	11.22	•
7	[7]	7.5	CyllaNscl	49.76	1.8.1	32.25	٠	1590-1630 (C=N)
	ethanol	152	217	19.65	1.78	32.00		111-NMIR(CDCh) 5 7.9-8.4(m, 4i1, Ar.11).
×	285	85	CollyNy	50.70	3.28	46.00		3100-3400 cm ⁻¹ (NHMI ₂)
	ethanol	pa:	213	50.30	3.15	15.60		
9a	273	82	C ₁₁ 118N ₂ Oct	15.67	2.76	33.91	,	3180-3500(NII), 1660(C=O)
	ethanol	pale yellow	289	45.41	2.57	33.69		111-NMR(CDCh) 6 4.1(s, 211, CH2), 69.3(NH) and 6
	,	,						7.8-8.3(m, 411, AtH).
 8	275	2 -	C11117N70	52.17	2.76	38.73	,	3260(NII), 1670(CO).
	acetic	wellow		16.13	2.62	38.42	•	(11-NMIR(DMSO) 6 4.75(s, 211-CH ₂), 5 10.3(s, 111,
			-	_		-		NII), 8 7.5-8.2(m, 411, Arill)
2	325	Ĝ	C ₁₀ 11 ₅ N ₇ O	50.20	2.09	41.00	,	3320(NII), 1685(CO)
	acetic	ופו	239	50.42	2.20	40.83		111-NMIR (DMSO) 6 9.2(s, 111, NII).
=	305	_ :	C10115N7S	47.05	96.	38.43	12.59	7.2-7.7(m, 411, A111).
:	acetic	yellow	255	16.80	1.85	38.26	12.31	
71	J40	89	C16H9N7	64.12	 	32.77	,	1620(C=N), absence of NII, NII2
•	acelic	redish	299	64.13	2.95	32.54	-	111-NAIR (TFA) 5 7.7-8 6(m, 911, Act1)
_	096 <	₹,	C911.1N8	18.21	8/	45.90	,	1590(C=N).
:	acetic	yellow		17.93	0.7	15.81		[†] 11-NMR (DMSO) 5 7.6- 8 .4(m, 411, Art1).
	328	90	C161111N7	63.78	3.65	32.55	•	3360(NII), 1620(C=N)
	ethanol	red	301	63.64	3.62	32.36		111-NMR (DMSO) 8 2(s, 111, C11), 695(s, 111,
<u>-</u>	345	8.5	0,2	61.63	3.92	29.60	,	3340(NII), 1630(C=N)
:	ethanol	tedish		01.82	2	29.51		•
<u></u>	295	59 .	Clousny	53.81	2.24	13.94	ı	1630(C=N)
	יוכהנוכ	nword		53.72	2.16	43.75		111.NMR (DMSO) 6 8.8(s, 111, CII) and 6 7.3-
			-					

Full analysis of <u>1</u>, <u>2</u> are presented in Ref. (4).
** CI (Calc. 16.32, Found 16.15%).

RESULTS AND DISCUSION

Treatment of triazino[5,6-b]3(4H)quinoxaline $\underline{2}^{(4)}$ with phosphorous pentasulfide in dry pyridine gave triazino[5,6-b]3-(4H)quinoxalinthione 3 which on reaction with alkyl halides and anhydrous sodium acetate in refluxing absolute ethanol gave the corresponding 3-alkyl thio products (4a,b). Refluxing 3 with ethyl chloroacetate and anhydrous sodium acetate in absolute ethanol gave triazino[5,6-b]-3-carboethyoxymethyl-thioquinoxaline 5 which on hydrazinolysis by refluxing with hydrazine hydrate produced the carbohydrazide derivative 6. Treatment of triazinone compound 2 by refluxing with phosphorus oxychloride gave triazino[5,6-b]-3-chloroquinoxaline 7, which in too reacted with hydrazine hydrate to give triazino [5.6-b]-3-hydrazino quinoxaline 8. The same product 8 was separated from fusion of 3 with hydrazine hydrate. Reaction of 8 with chloroacetylchloride gave 3-chloroacetyl hydrazino derivative 9a which cyclized to triazolo- triazinoquinoxalinone 9b. Compound 8 underwent several cyclization raction. Thus, treatment of 8 with ethyl chloroformate in pyridine gave triazolo[4',5':2,3]triazino[5,6-b]-3-quinoxalinone 10. Refluxing 8 with carbon disulfide in pyridine gave triazolo[4',5':2,3]triazino[5,6-b]-3-mercapto-quinoxaline 11. Reaction of 8 with benzovl chloride gave triazolo[4',5':2,3]triazino[5,6-b]-3-phenylquinoxaline 12. Similarly, reaction of 8 with sodium nitrite in hydrochloric acid gave the cyclization product tetrazolo[4',5':2,3]triazino[5,6-b]quinoxaline 13. Condensation of 8 with benzaldehyde, p-methoxy benzaldehyde gave the corresponding triazino[5,6-b]-3-arylidine hydrazonoguinoxaline 14. Finally, reaction of 8 with formic acid gave triazolo[4',5':2.3] triazino[5,6-b]quinoxaline 15.

REFERENCES

- (1) N.Muresan; E.V. Muresan, Patient 112(849) (rom), C.A. 105, 115095 (1986). M.Z.A Badr, S.A. Mahgoub; O.S. Moustafa, A.A. Geies; Phosphorous, Sulfur and Silicon, 79, 77 (1993)
- (2) G.H. Fisher, H.R. Moreno; J.E. Oatis, H.P. Shultz. J. Med. Chem., 18, 746 (1975); M.Z.A. Badr, S.A. Mahgoub, A.A. Geies, O.S. Moustafa, F.M. Abd El-Latif, Phosphorous, Sulfur and Silicon, 73, 27 (1992)

- (3) S. Gozyo, M. Kenzi, K. Yoshikisa, Heterocycles, 27(10), Review 2481 (1988); T. Miyagi, H. Yamamoto (to Sumitomo Chem. Co. Ltd.), Jp. Pat. 17, 747 (1968), C.A., 69, 10475 (1968); M.Z.A. Badr, S.A. Mahgoub, O.S. Moustafa, F.M. Abd El_Latif; J. Chem. Soc. Pak., 4, 264 (1993)
- (4) M.Z.A. Badt, S.A. Mahgoub, F.M. Atta, O.S. Moustafa, F.M. Abd El-Latif, J. Indian. Chem. Soc., 71, 617 (1994)
- (5) O.S. Moustafa, M.Z.A. Badr, Phosphorous, Sulfur and Silicon (in press); presented in part at the 5th Ibn Sina Inter. Conference, Cairo-Egypt 9-12 December PC 136 of Abstract

Received July 28, 1997